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Colliding Plane Gravito-Electromagnetic Waves 

J. B. Grittiths ~ 
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The collision and interaction of plane electromagnetic waves is considered. Field 
equations are formulated and the appropriate boundary conditions are described 
in detail. A solution-generating technique is defined and a general class of 
solutions is obtained in which the polarization of the approaching waves is 
constant and aligned. 

1. I N T R O D U C T I O N  

The first exact solution describing the collision and interaction of plane 
electromagnetic waves was given by Bell and Szekeres (1974). Since then, 
a new approach  to the topic has been developed by Chandrasekhar  and 
Xanthopoulos  (1985, 1987). This is based on the fact that the main field 
equations are identical to the Ernst equations for stationary axially sym- 
metric space-times. 

The structure of  colliding plane wave solutions is illustrated in Figure 
1. Two waves are assumed to approach each other in a flat background.  
The basic problem is to find the exact solution of  the field equations in 
region IV for any given initial waves in regions I I  and III .  In practice, 
however, it is easier first to find a solution in region IV, and then to consider 
the initial waves that give rise to it provided the appropriate  boundary  
conditions are satisfied. 

2. FIELD E Q U A T I O N S  

The line element for the space-time may conveniently be taken in 
the form 

ds 2 = 2 e  -M du dv - e - U [ x  dy2 + x - ' (  dx  - ~o dy) 2] (1) 
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Fig. 1. The structure of colliding plane wave solutions. Region I is taken to be flat, regions 
II and III contain the approaching plane waves, and region IV is the interaction region. A 
strong curvature singularity usually develops in the interaction region, but this may be replaced 
by an unstable quasiregular singularity. 

where U, X, to, and M are functions of  the two null coordinates u and v 
only in the interaction region, are functions of u only in region II, are 
functions of  v only in region III, and are constants in region ~. The other 
coordinates x and y are aligned with the two spacelike Kilting vectors. 
Using this notation, one can write the Einstein-Maxwell field 6quations in 
the form 

Uoo = U. Uo (2) 

2(Xu~ + ito.~) = Uu(xv + ia~) + Uv(xu + itou) + 2X-I(X~ + ito,,)(X~, + iw~) 

-4X(X  z + to2)-W2(X + ito)~o~2 (3) 

2U~v= U2-2UvM,~ -2 2 2 - +X (Xv+ to~)+4qbo~o (4) 

U.  - 2 U .M.  + X-2(X2. + to2.) + 4qb2~2 (5) 2 U . / ,  = 2 

2 M ~  - - U~ U~ + X-2(XuX~ + w.wv) (6) 

2( " m(XXo + w~%)\ (x+iw)(x"-i~~ 
d~2,~= U ~ - ,  X - ~ - ~ - ~ )  )d~24 2X(X2+W2),/2 ~o (7) 

1 ( .w(XX=+OJW.)~ ( x - iw) (X~+R%)  
~ o , , , = ~ . U . + t - ~  )cb2-~ 2xfx2+w2), /2  dPo (8) 

Equations (7) and (8) imply that there exists a complex potential 
function H(u,  v) for the scale-invariant Maxwell components such that 

^u/2r X ('~-iO)) ]1/2 u/2r ,~/(X'Ji-/O)2 ]1/2 
* o = - -  L(xT+-L-5 7: j . . ,  (9) 
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and H satisfies the equation 

2xH~v  + (Xv + iwv) Hu + (Xu - i tou)H~ = 0 (10) 

It can be seen that equation (2) can immediately be integrated to give 

e - U  = f ( u ) + g ( v )  (11) 

where f ( u )  and g(v) are arbitrary functions that, in region I, must become 
constants that may be taken to be �89 

Equations (4) and (5) imply that f and g are monotonically decreasing 
functions in the interaction region. In this region they may therefore be 
chosen as null coordinates instead of u and v. It may also be observed that 
the metric must become singular in the interaction region as f +  g-~ 0. 

Finally, it can also be seen that the complex equation (3) is the 
integrability condition for the remaining equations. Thus, if a solution of 
(3) is found for X and to, then a function M automatically exists satisfying 
(4)-(6). Attention is thus focused on the two main equations (3) and (10). 

It has been found convenient also to consider the alternative set of  
coordinates to f and g defined by 

t = (�89 -f)1/2(�89 + g)1/2+ (�89 _ g)1/2(1+f)1/2 
(12) 

z = (�89 -f)1/2(�89 + g)1/2 _ (�89 g)1/2(�89 +f)1/2 

With this, 

e u = f + g =  ( 1 -  t2)l/2(1-z2) 1/2 (13) 

and the singularity caused by the mutual focusing of the two waves occurs 
on the surface t = 1. 

At this point, it is convenient to adopt the approach of Chandrasekhar 
and Xanthopoulos (1985) and to introduce the function �9 defined by 

= (1 - t 2) 1/2(1 - -  Z 2) 1/2X-' (14) 

The imaginary part of  (3) then implies that there exists a real potential 
function �9 such that 

1 - z  2 
to, = ~ [ ~ - i( HffI~ - HH~)] 

(15) 
1-- t  2 

w~ = ~ [ ~ , - i ( H IYI , - IYt H , ) ] 

It is then convenient to introduce the complex potential Z defined by 

Z =  ~ + i ~ +  H f I  (16) 
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With this, the equations (3) and (10) can be written as the two complex 
Ernst equations 

(Re Z - H/-))V 2Z = ( V Z ) 2 . 2 / - ) ( V H )  �9 (VZ) 
(17) 

(Re Z-HISI)VZH = (VZ) .  ( V H ) -  2/-)(VH) 2 

It is convenient to introduce the associated Ernst potentials E and ~7 
defined by 

Z - 1  2 H  
E Z + l '  ~7 Z + I  (18) 

which satisfy the alternative equations 

(1 - E/~ - ~7"~)VgE = -2VE(LffVE + ~V~7) 
(19) 

(1 - E/~ - ~/~)V2~/= -2VT/(/~VE + ~/V ~/) 

3. B O U N D A R Y  C O N D I T I O N S  

The appropriate junction conditions that should be used for colliding 
plane wave problems are those of O'Brien and Synge (1952). In terms of  
the metric functions of  (1), these conditions require that U must be smooth, 
and that X, to, and M must be continuous across the null boundaries, which 
may be taken to be u = 0 and v = 0. It follows immediately that the functions 
f(u) and g(v) must have the form 

f = � 8 9  f o r u < O ,  f=l-(clu)"~+.. ,  f o r u - O  
( 2 0 )  

g=�89 f o r v < 0 ,  g=l-(c2v)"2+'., f o rv ->0  

where nl,  n2-> 2, and cl and c2 are arbitrary constants related to the ampli- 
tudes of  the approaching waves. 

Any solution of  the main field equations (17) or (19) will yield X and 
to as functions of f and g and, in view of  (20), these will automatically 
satisfy the required boundary  conditions. The difficulty occurs when the 
remaining field equations are integrated to obtain M. 

It is now convenient to put 

f'g' e T M  - e -s (21) 
( f +  g)1/2 

and equations (4) and (5) then imply that S satisfies 

x}+ to}+ 
Sf=-�89 X2 4 f,2 ) 

(22) 
/x +to  a, o6o\ 

Sg = -�89 + g) ~----~-5-----+ 4 - ~ )  
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Now M will only be continuous across u = 0 and v = 0 if S contains terms 
of the form 

S = kl log( �89 + k2 log( 1 -  g) + " "  (23) 

where kl and k2 are constants by 

kl=l-1/n~, k2=l-1/n2 (24) 

and which therefore satisfy the inequality �89 kx, k2 < 1. 
The above conditions can alternatively be expressed in the form 

lim[(�89 4X H,/-I '~l = 2(I - n~ ) y-,,/2 \ X2 f+g s • 
(25) 

\ X ~ f + g  g g l ]  

They may also be expressed in terms of the Ernst potentials in either of  
the forms [ ] :1) Z~,p - 2 (/qH~,p + HHvZ p) + 2(Z + Z. ) Hp/qp {1 

lim 
,~o ( Z + 2 - 2 H / 3 )  2 
z-~0  

(26) ](1) [ Zq;Zq-2(ffIHqyZq+HfflqZq)+2(Z+~)HqITtq =2 1--~2 
lira L (Z  + 2 - 2 H/-I) 2 
z--~O 

or [ ] ( l )  lim (1 - 7l'~)EpPp + ~ETtpF.p + ~F.r + (1 - EP)Ttp~p = 2 1 -~-~ 
, ~ o  (1  - E / ~  - ~ ) ) 2  
z-->O 

lim[(1-rl~'l)Eqff, q-f'lE'rlqff, q-rlff, f'lqEq+(l-Eff~)rlq~q]=2(| l )  (27) 
, - ,0  (1  - E / ~  - , 1 4 )  2 n2/ 
z-->0 

where, for convenience, I have put 

0 0 0 0 0 0 
- + =- ( 2 8 )  Op Ot Oz' Oq Ot Oz 

4. SOLUTION-GENERATING TECHNIQUES 

Many techniques are known by which electrovac solutions of  the Ernst 
equations can be generated from initial solutions of the vacuum equations, 
particularly in situations such as this in which there are two commuting 
Killing vectors. In particular, it can be shown that the Ehlers-Harrison 
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transformation will always generate a new colliding wave solution if the 
initial vacuum solution describes colliding plane gravitational waves (Li 
and Ernst, 1989). Some such solutions have been obtained by Garcfa Diaz 
(1988, 1989) [see also the general review of  Griffiths (1990)]. 

For example, it can easily be seen that, if E = Eo, ~ = 0 is a vacuum 
solution of  (19) satisfying (27), then a family of  new electrovac solutions 
which automatically satisfies (27) is given by 

E = a E o + b ,  ~7=cEo+d (29) 

where a, b, c, and d are arbitrary complex constants that are only required 
to satisfy the two conditions 

aE + cd = O, aa + bE + ce + dd = 1 (30) 

Chandrasekhar and Xanthopoulos (1985, 1987) have obtained a number 
of  solutions using this transformation both with a = 0, b = 0, c = 1, and 
d =0,  and also with b =0 ,  c = 0 ,  and d = (1 - a 2 )  1/2. The above transforma- 
tion with b = 0 ,  d = 0 ,  and c = ( 1 - a 2 )  1/2 has also been used by Halilsoy 
(1988). 

It may be noted, however, that the solutions obtained in this way are 
generalizations of  colliding gravitational wave solutions and that, provided 
a # 0, they revert to these solutions in the limit as the electromagnetic 
components vanish. It is therefore expected that any exact solutions obtained 
will describe the collision of  electromagnetic waves that are coupled with 
gravitational waves (even in the case when a = 0). The condition that the 
approaching waves are purely electromagnetic, and that regions II and III 
are conformally flat, can be simply stated as the condition that X ~ 1 and 
to-> 0 on both of  the boundaries as f -> �89 and as g-~ �89 However, it is not 
clear how this can be expressed as general conditions on the Ernst potentials, 
although this condition may be satisfied in some particular cases such as 
in the Bell-Szekeres solution. 

5. DIAGONAL SOLUTIONS 

The class of  solutions in which the metric can be diagonalized is 
characterized by the fact that to = 0. This implies that qbo~2 must be real. 

I now restrict attention to the case when the Ernst potentials Z and 
H, or E and 7/, and ~o and ~2 are all real. In this case, the approaching 
electromagnetic waves have constant aligned polarization and, if these waves 
are also coupled with gravitational waves, then the polarization vectors of  
the approaching gravitational components must also be aligned. This condi- 
tion can be expressed by the fact that W0 and W4 must both be real and 
must give rise to a real component  W2 in the interaction region. 
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A class of  exact solutions of  this type can now be obtained using as 
an initial solution a general vacuum solution E = Eo, ~7 = 0 of  (18), where 
Eo is real. It  is convenient to put 

1 + Eo = e_Uoxol = (1 - t2)  1/2(1 -- Z2) 1/2 e v~ (31) 
1 - E0 

so that the main vacuum field equation becomes the single real linear 
equation 

[(1 - t2) Vo,t],,- [(1 --z2) Vo,z],z ~'0 (32) 

A large class of  solutions of  this equation can be written in the form 

Vo=E [ a.Pn( t )P.( z) + q.Q.(  t )P.(z)  + pnPn( t)Qn(z) + bnQ.( t)Qn(z) ] n 

( (1 -- t2) 1/2(lCi--tZ--Z2) 1'2} -�89 log(1 - t 2) - �89 l o g o  - z 2) + E  d, cosh-'  

(33) 
where P(x)  and Q(x)  are Legendre functions of  the first and second kinds, 
respectively, and an, p , ,  q~, bn, c~ and d~ are sets of  arbitrary constants. In 
order to satisfy the boundary  conditions, Vo must  contain either at least 
one Legendre function of  the second kind, or two cosh -1 terms with c~ = - 1  
and c2 = 1. 

A general family of  colliding electromagnetic wave solutions can now 
be obtained using the transformation (29) with the constants a, b, c, and d 
real and satisfying (30), and with the initial solution E0 given by (31) and 
(33). Following Chandrasekhar  and Xanthopoulos  (1987), it is convenient 
to put 

so that 

F = 1( Vo-  Uo) (34) 

Eo = tanh F (35) 

With this, the complete solution can now be expressed in the form 

1 
U=Uo~ X = a 2 + c 2 e - ~ o [ ( 1 - b )  c o s h F - a s i n h F ] 2  

to = 0, e -M = e2F[(1 - b) cosh F -  a sinh F ]  2 e ~ o  (36) 

(c - bc + ad)Fv ( c -  bc + ad)F~ 
r = dP2 - 

(1 - b )  cosh F - a  sinh F '  (1 - b )  cosh F - a  sinh F 

It is of  interest to note that, in the case when b = 0, d = 0, and c = 
( 1 -  32) 1/2, the above technique is equivalent to that obtained previously 
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by Panov (1978, 1979), and used by him to obtain a general class of solutions 
with a strong curvature singularity in the interaction region. 

In the further particular case when a = 0, b = 0, c -- 1, and d = 0, the 
above technique was given by Chandrasekhar and Xanthopoulos (1987). 
[It is of  interest to note that the solutions obtained in this way had previously 
been obtained by Charach (1979), who described them in terms of  elec- 
tromagnetic Gowdy cosmologies, without applying the boundary conditions 
for colliding plane waves.] It may also be noted that the Bell-Szekeres 
solution is included in this particular case when 

F = -Po(z)Qo(t) (37) 

(The initial vacuum solution in this case is the degenerate Ferrari-Ibafiez 
solution, which is part of  the Schwarzschild solution inside the initial 
horizon.) Chandrasekhar and Xanthopoulos (1987) also obtained a class 
of  solutions which similarly do not contain strong curvature singularities 
on the surface t -- 1 by putting 

F=�89 ~ a,P,( t)P,(z)-Po(z)Qo(t)  (38) 
n = O  

in this particular case. 
A much larger class of  solutions that does not contain a strong curvature 

singularity when t = 1 can be obtained by using the general transformation 
(36) and by taking initially the vacuum solution of  Feinstein and Ibafiez 
(1988). In this case 

_} 1 F=�89  ~E a, P,( t)P,(z)  
n 

i (1  - -  t 2) 1/2(1 - -  Z 2) 1/2 ( 3 9 )  

where 

E d~ = k + 1 (40) 

The necessary boundary conditions are satisfied in this case provided there 
are at least two cosh -~ (solitonic) terms with constants satisfying 

Cl = - 1 ,  c2 = 1, d~ = 2(1 - l / h i ) ,  d22 = 2(1 - 1/n2) (41) 

where n~, n 2--- 2. In these solutions it is possible for the wavefronts to be 
continuous. It is also of  interest to note that the two solitonic terms that 
provide the continuity across the boundaries of the interaction region in 
this case can be expressed in the alternative forms 

( ,+,z ) ( 
dlc~  ( 1 - t 2 ) l / 2 ( 1 - z 2 )  1/2 +dzcOsh-I  ( 1 - t 2 ) l / 2 ( 1 - z 2 )  1/2] 

= - (d ,  + d2)Qo(t)Po(z) - (dl - dE)Po(t)Qo(z) (42) 
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In all these solutions the surface t = 1 corresponds to an unstable quasi- 
regular singularity. 
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